spls.recovery.Rd
This function fits a sparse partial least squares (sPLS) model to the response variable \(Y\) using the predictor matrix \(X\). The fitted values \(\hat{Y}\) are returned.
spls.recovery(Y, X, ncomp, eta)
A numeric vector \(\hat{Y}\) containing the fitted values from the sparse PLS model.
This function fits a sparse PLS model using the spls
package. The sparsity level is controlled by the eta
parameter, where higher values lead to sparser loadings. The number of components is specified by ncomp
. The function returns the fitted values of \(Y\) from the model.
Other recovery:
glmnet.recovery()
,
ols.recovery()
,
pls.recovery()
,
simple.recovery()